What is the inverse of the function f(x) = 4x + 8?h(x) = one-quarterx – 2h(x) = one-quarterx + 2h(x) = one-halfx – 2h(x) = one-halfx + 2

Accepted Solution

Answer: FIRST OPTION.Step-by-step explanation: Given the following function: [tex]f(x)= 4x + 8[/tex] Follow this steps in order to find its inverse: 1. Rewrite the function with [tex]y=f(x)[/tex]: [tex]y= 4x + 8[/tex] 2. Solve for "x": [tex]y-8= 4x\\\\x=\frac{y-8}{4}\\\\x=\frac{y}{4}-2[/tex] 3. Now you must exchange the variables: [tex]y=\frac{x}{4}-2[/tex] 4. And finally, rewrite the function with [tex]h(x)=y[/tex]: [tex]h(x)=\frac{x}{4}-2[/tex] Therefore, the inverse function is [tex]h(x)=\frac{x}{4}-2[/tex]